这一考虑带来了零售商如何把相同的产品以不同的价格卖给不同的客户这一挑战性问题。一般而言,这需要在具有不同付费意愿的客户之间设置区隔以使得高付费意愿的客户不能以为低付费意愿客群设定的价格来付费。零售商可以使用如下几种区隔机制: 店铺区域:连锁零售商店一般都位于不同的社区内,这些社区具有不同的平均家庭收入、平均家庭规模、近竞争商店距离等人口属性和竞争性因素。这就自然对客户的价格敏感性以及寻找替代供应商的能力或者意愿做了区分。这使得零售商可以在店铺的级别上在不同区域设置不同的价格。 包装大小:诸如软饮料或化妆品之类的消费品(FMCG)具有较高的周转率,消费者自然可以选择是频繁购买少量产品或者储存大量的产品,这种权衡也受到诸如家庭规模等人口因素的影响。这一机制通过购买大型或小型包装的意愿来创建区隔,并为不同包装尺寸设置不同的单位边际价格。买一送一(BOGO)优惠也与此机制有关。 促销活动:客户可以根据他们是否愿意等待较低价格还是以正常价格立即购买来区分。此种客户分群方式被应用于服饰领域,在该领域季节性促销是主要的营销机制之一。使用线性回归与归因引擎探索原因并预测未知。销量数据分析产品
促销活动的有效性分析:只有充分了解客户,才能准确定位促销对象,提高针对性,降低活动成本。零售业通过广告、优惠券、各种折扣和让利的方式搞促销活动,以达到促销产品,吸引顾客的目的。用多维关联分析方法,通过比较促销期间的销售量和交易数量与促销活动前后的有关情况,认真分析促销活动的有效性,还可以分析出应该在什么时间,什么地点、以什么种方式、什么商品和对什么样的人进行促销活动,尽量避免企业资源的浪费,提高销售额。顾客忠诚度分析:零售企业通过办理会员卡、建立顾客会员制度的方式,来跟踪顾客的消费行为。通过对顾客会员卡信息进行数据挖掘,可以记录顾客的购买序列,将同一顾客在不同时期购买的商品分组,确定特定个体的兴趣、消费习惯、消费倾向和消费需求,由时间序列模式推断出相应消费群体或个体下一步的消费行为。序列模式挖掘用于分析顾客的购买趋势或忠诚度的变化,据此对价格和商品的花样加以调整和更新,以便留住老客户,吸引新客户。时间序列数据分析组合与推荐使用时序预测引擎,帮您预测未来。
随着数据采集技术和存储技术 的发展,企业建立了庞大的数据库和数据仓库,积累了大量的数据,利用这些数据辅助企业正确决策,已经成为商界的共识。然而数据的“式”增长,让一般的数据分析技术望而却步,数据挖掘便在此背景下迅速发展起来。 从技术的角度看,数据挖掘(data mining)是从大量的、不完全的、有噪声的、模糊的实际应用数据中,提取潜在有用的信息和知识的过程。从商业的角度看,数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库的大量业务数据进行抽取、转换、分析和其他模型处理,从中提取出辅助商业决策的关键性知识,即发现数据中的相关商业模式。 数据挖掘融合了人工智能(artificial intelligence)、统计学(statistics)、机器学习(machinelearning)、模式识别(pattern recognition)和数据库等多种学科的理论,方法和技术。目前在金融服务机构、零售商、金融服务机构、制造业、电信公司、保险公司、医疗业、航空业、市政等各个领域中取得了的应用。
数据挖掘从未如此简单。 ✓ 简单可靠,快捷有效。没有纷乱的按钮,没有繁琐的步骤,没有复杂的设置,小白级操作。 ✓ 丰富的行业经验,满足更多需求,支持个性化定制我们的原则始终如一:不是数据挖掘,更是价值挖掘。 ✓ 每份结果都是一份不错的小型咨询报告。 ✓ 如果您来自大公司,我们将大幅降低您的咨询费和人力成本;如果您是个人或小公司,智能驱动触手可及,帮您紧跟时代和产业升级。 安全 · security:我们知道你的数据是金矿我们丝毫不会试图占有 效能 · efficiency:我们知道掘金的过程很辛苦我们愿意提供解决方案,帮你又快又好的提炼价值 额外受益 · additional profits:或许有人做同样的事我们的专业性、可靠性及技术先进,将使你额外受益我们知道掘金的过程很辛苦,我们的方案可以帮您又快又好的解决问题。
大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等,这些方法从不同的角度对数据进行挖掘。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。前沿技术和优秀人才,保证技术先进性;自动数据分析系统
使用RFM客户价值分析器,衡量客户价值和客户创造利益的能力。销量数据分析产品
关键算法库为我们自研的全自动优化算法。与其它算法不同,关键算法库的算法支持全自动建模,无需用户参与。算法在收到一个新任务后,会自动探测数据特征、任务类型、并自动加载优参数,然后进行建模,并将建模结果提交咨询报告渲染引擎渲染成一份咨询报告。我们的算法库智能化程度相当高,使用门槛非常低,即使用户完全不懂技术,也可以获得很好的数据挖掘结果。同时,算法库算法的精度和性能处于行业先进水平。例如,经实际验证,我们的时序预测算法比百度大脑(easyDL)快 8~10倍,精度高 3~4 倍。销量数据分析产品
上海暖榕智能科技有限责任公司是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的数码、电脑中汇聚了大量的人脉以及**,在业界也收获了很多良好的评价,这些都源自于自身不努力和大家共同进步的结果,这些评价对我们而言是比较好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海暖榕智能科技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!